β -Alkoxy- and Aryloxypropionates

By C. E. Rehberg and Marion B. Dixon

Earlier papers from this Laboratory described n-alkyl β -ethoxypropionates, 2 n-alkyl β -n-alkoxypropionates and a group of β -alkoxypropionates of various types. 4

The present paper, which concludes this series, describes the addition of various alcohols and phenols to the olefinic group in acrylic esters and the alcoholysis of some of the resulting ether-esters. Table I shows the new compounds and their characteristics.

ular weight.³ Furfuryl alcohol and 2-ethoxyethanol also reacted satisfactorily.

From this and previously reported studies it may be concluded that most unhindered primary alkanols and phenols readily add to acrylic esters, the activity being less with compounds of higher molecular weight. Secondary alcohols are generally less reactive than the primary ones. Tertiary alcohols appear to be unreactive.

Alcoholysis of lower alkyl esters of ether-acids

Table I
Preparation, Properties and Analyses of Esters, ROCH2CH2COOR'

		Boiling , point				Mol.		Sapn.					_:	
R	R'	Vield,	°C.	Mm.	n20D	d204		ction Found		iiv. Found	Carbo Calcd.	on, % Found	Hydro: Calcd.	gen, % Found
Methyl	Isobutyl	44ª	88	29	1.4128	0.9349	42.44	42.70	160.2	161.3	60.0	59.9	10.1	10.1
Methyl	3-Chloropropyl	78 ^b	82	2	1.4402	1.1207	42.69	42.50			46.5	47.0	7.3	7.5
Ethyl	3-Chloropropyl	756	80	1	1.4400	1.0843	47.31	47.33		• • •	49.3	49.0	7.8	7.8
Ethyl	2-Chloroallyl	846	45	0.4	1.4448	1.0952	46.85	46.84	192.6	182.7	49.9	49.7	6.8	6.7
Phenyl	Ethyl	53ª	92	. 7	1.5002	1.0745	52.69	53.17	194.2	188.6	68.0	68.0	7.3	7.6
Phenyl	Methyl	59ª	85	.4	1.5071	1.1076	48.08	48.44	180.2	171.4	66.6	66.3	6.7	6.8
p-Cresyl	Methyl	37ª	91	.4	1.5061	1.0811	52.69	53.37			68.0	68.1	7.3	7.3
o-Cresyl	Methyl	52ª	92	.8	1.5042	1.0797	52.69	53.27	194.2	190.5	68.0	67.8	7.3	7.2
Methyl	2-Ethoxyethyl	86ª	92	6	1.4225	1.0094	44.08	44.40	176.2	175.5	54.5	54.4	9.1	8.9
Methyl	2-Phenoxyethyl	53 ^b	112	0.2	1.5010	1.1118	58.96	59.44	224.3	223.5	64.2	64.2	7.2	7.2
Methyl	Tetrahydrofurfuryl	68 ^b	74	0.3	1.4459	1.0796	46.50	46.47	188.2	189.2	57.4	56.6	8.6	8.5
Furfuryl	Methyl	30ª	127	12	1.4693	1.1278	45.57	45.52	184.2	191.5	58.7	58.5	6.6	6.5
2-Ethoxyethyl	Methyl	57ª	70	1.2	1.4232	1.0128	44.08	44.32	176.2	172.4	54.5	54.6	9.1	8.9
2-Ethoxyethyl	2-Ethoxyethyl	574	96	0.2	1.4307	1.0114	59.58	59.93	234.3	235.9	56.4	56.3		
n-Butyl	2-Methoxyethyl	876	68	. 5	1.4253	0.9719	53.32	53.79	204.3	203.3	59.0	58.6	9.9	9.9
n-Butyl	2-Butoxyethyl	62^{b}	100	. 5	1.4298	0.9415	67.17	67.54	246.3	244.5	63.4	63.4	10.6	10.3
Ethyl	2-(2-Chloroethoxy)- ethyl	79 ^b	96	.3	1.4451	1.1153	53.57	53,64	112.4	113.6	48.1	47.9	7.6	7.6

^a Made by the addition of alcohol to the acrylic ester. ^b Made by the alcoholysis of ROCH₂CH₂COOR where $R = CH_3$, C_2H_5 or C_4H_9 .

It was of interest that phenols reacted better than most primary alkanols of comparable molec-

(1) One of the Laboratories of the Bureau of Agricultural and Industrial Chemistry, Agricultural Research Administration, United States Department of Agriculture. Article not copyrighted.

(2) Dixon, Rehberg and Fisher, THIS JOURNAL, 70, 3733 (1948).

(3) Rehberg, Dixon and Fisher, ibid., 69, 2966 (1947).

(4) Rehberg, Dixon and Fisher, ibid., 68, 544 (1946).

is a convenient way to prepare higher esters, as may be seen from the yields in Table I.

The detailed procedures used in the present work have been described in an earlier paper.

Summary

Seventeen esters of β -alkoxy- and β -aryloxypropionic acids have been prepared by (a) addition

of alcohols or phenols to alkyl acrylates, or (b) alcoholysis of a lower alkyl ester of the appropriate ether-acid. The order of activity in (a) was phe-

 $\mathrm{nol}>\mathrm{primary}$ alcohol > secondary alcohol. Tertiary alcohols did not react.